Analysing user identity via time-sensitive semantic edit distance (t-SED): a case study of Russian trolls on Twitter
Dongwoo Kim (),
Timothy Graham (),
Zimin Wan () and
Marian-Andrei Rizoiu ()
Additional contact information
Dongwoo Kim: Australian National University
Timothy Graham: Queensland University of Technology
Zimin Wan: Australian National University
Marian-Andrei Rizoiu: University of Technology Sydney
Journal of Computational Social Science, 2019, vol. 2, issue 2, No 12, 351 pages
Abstract:
Abstract In the digital era, individuals are increasingly profiled and grouped based on the traces that they leave behind in online social networks such as Twitter and Facebook. In this paper, we develop and evaluate a novel text analysis approach for studying user identity and social roles by redefining identity as a sequence of timestamped items (e.g., tweet texts). We operationalise this idea by developing a novel text distance metric, the time-sensitive semantic edit distance (t-SED), which accounts for the temporal context across multiple traces. To evaluate this method, we undertake a case study of Russian online-troll activity within US political discourse. The novel metric allows us to classify the social roles of trolls based on their traces, in this case tweets, into one of the predefined categories left-leaning, right-leaning, and news feed. We show the effectiveness of the t-SED metric to measure the similarities between tweets while accounting for the temporal context, and we use novel data visualisation techniques and qualitative analysis to uncover new empirical insights into Russian troll activity that have not been identified in the previous work. In addition, we highlight a connection with the field of actor–network theory and the related hypotheses of Gabriel Tarde, and we discuss how social sequence analysis using t-SED may provide new avenues for tackling a longstanding problem in social theory: how to analyse society without separating reality into micro vs. macro-levels.
Keywords: Edit distance; Approximate string matching; Twitter; Trolls; Actor-network theory; Sequence analysis (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s42001-019-00051-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcsosc:v:2:y:2019:i:2:d:10.1007_s42001-019-00051-x
Ordering information: This journal article can be ordered from
http://www.springer. ... iences/journal/42001
DOI: 10.1007/s42001-019-00051-x
Access Statistics for this article
Journal of Computational Social Science is currently edited by Takashi Kamihigashi
More articles in Journal of Computational Social Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().