EconPapers    
Economics at your fingertips  
 

“Evacuate everyone south of that line” Analyzing structural communication patterns during natural disasters

Ema Kušen () and Mark Strembeck
Additional contact information
Ema Kušen: Vienna University of Economics and Business (WU)
Mark Strembeck: Vienna University of Economics and Business (WU)

Journal of Computational Social Science, 2021, vol. 4, issue 2, No 5, 565 pages

Abstract: Abstract In this paper, we analyze more than 16 million tweets that have been sent from 6.1 million Twitter accounts and are related to nine natural disasters. As part of our analysis, we identify eight basic emotions conveyed in these tweets. We found that during natural disasters, social media messages at first predominantly express fear, while sadness and positive emotions increase in the immediate aftermath of the event. In this context, positive emotions contribute to the social phenomenon of emotional bonding and are often related to compassion, gratitude, as well as donations for disaster relief. In our analysis, we found that the users’ emotional expressions directly contribute to the emergence of the underlying communication network. In particular, we identified statistically significant structural patterns that we call emotion-exchange motifs and show that: (1) the motifs 021U and 021D are common for the communication of all eight emotions considered in this study, (2) motifs which include bidirectional edges (i.e. online conversations) are generally not characteristic for the communication of surprise, sadness, and disgust, (3) the structural analysis of a set of emotions (rather than a single emotion) leads to the formation of more complex motifs representing more complex social interactions, and (4) the messaging patterns emerging from the communication of joy and sadness show the highest structural similarity, even reaching a perfect similarity score at some point during the data-extraction period.

Keywords: Emotion analysis; Network motif; Emotion-exchange motif; Natural disaster; Twitter; User behavior (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s42001-020-00092-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcsosc:v:4:y:2021:i:2:d:10.1007_s42001-020-00092-7

Ordering information: This journal article can be ordered from
http://www.springer. ... iences/journal/42001

DOI: 10.1007/s42001-020-00092-7

Access Statistics for this article

Journal of Computational Social Science is currently edited by Takashi Kamihigashi

More articles in Journal of Computational Social Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcsosc:v:4:y:2021:i:2:d:10.1007_s42001-020-00092-7