Network diffusion of competing behaviors
Yuan Hsiao ()
Additional contact information
Yuan Hsiao: University of Washington
Journal of Computational Social Science, 2022, vol. 5, issue 1, No 3, 47-68
Abstract:
Abstract Research indicates that network structure affects the diffusion of a single behavior. However, in many social settings, two or more behaviors may compete for adoption, as in the case of religious competition, social movements and counter-movements, or conflicting rumors. Lessons from one-behavior diffusion cannot be easily applied because the outcome can take the form of one-behavior domination, two behaviors splitting the network, both behaviors occupying a small fraction of the network, or no diffusion. This article tests how three well-known factors of single-behavior diffusion—network transitivity, adoption threshold, and connectedness of early adopters—apply to scenarios of competitive diffusion. Results show that minor differences in initial adopter size tend to magnify, creating a significant “head-start advantage.” Nevertheless, the degree of this advantage depends on the interaction between network transitivity, adoption threshold, and connectedness of initial adopters. The article describes the conditions under which countervailing ties may (or may not) create inequality in behavioral diffusion.
Keywords: Competitive diffusion; Behavioral adoption; Social networks; Simulations (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s42001-021-00115-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcsosc:v:5:y:2022:i:1:d:10.1007_s42001-021-00115-x
Ordering information: This journal article can be ordered from
http://www.springer. ... iences/journal/42001
DOI: 10.1007/s42001-021-00115-x
Access Statistics for this article
Journal of Computational Social Science is currently edited by Takashi Kamihigashi
More articles in Journal of Computational Social Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().