Mitigation strategies against cascading failures within a project activity network
Christos Ellinas (),
Christos Nicolaides and
Naoki Masuda ()
Additional contact information
Christos Ellinas: Nodes and Links Ltd
Christos Nicolaides: University of Cyprus
Naoki Masuda: State University of New York at Buffalo
Journal of Computational Social Science, 2022, vol. 5, issue 1, No 16, 383-400
Abstract:
Abstract Successful on-time delivery of projects is a key enabler in resolving major societal challenges, such as wasted resources and stagnated economic growth. However, projects are notoriously hard to deliver successfully, partly due to their interconnected and temporal complexity which makes them prone to cascading failures. Here, we develop a cascading failure model and test it on a temporal activity network, extracted from a large-scale engineering project. We evaluate the effectiveness of six mitigation strategies, in terms of the impact of task failure cascading throughout the project. In contrast to theoretical arguments, our results indicate that in the majority of cases, the temporal properties of the activities are more relevant than their structural properties in preventing large-scale cascading failures. In practice, these findings could stimulate new pathways for designing and scheduling projects that naturally limit the extent of cascading failures.
Keywords: Project risk; Cascading failures; Mitigation strategies; Complex networks (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s42001-021-00123-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcsosc:v:5:y:2022:i:1:d:10.1007_s42001-021-00123-x
Ordering information: This journal article can be ordered from
http://www.springer. ... iences/journal/42001
DOI: 10.1007/s42001-021-00123-x
Access Statistics for this article
Journal of Computational Social Science is currently edited by Takashi Kamihigashi
More articles in Journal of Computational Social Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().