EconPapers    
Economics at your fingertips  
 

Community membership consistency applied to corporate board interlock networks

Dafne E. van Kuppevelt (), Rena Bakhshi, Eelke M. Heemskerk and Frank W. Takes ()
Additional contact information
Dafne E. van Kuppevelt: Netherlands eScience Center
Rena Bakhshi: Netherlands eScience Center
Eelke M. Heemskerk: University of Amsterdam
Frank W. Takes: Leiden University

Journal of Computational Social Science, 2022, vol. 5, issue 1, No 35, 860 pages

Abstract: Abstract Community detection is a well-established method for studying the meso-scale structure of social networks. Applying a community detection algorithm results in a division of a network into communities that is often used to inspect and reason about community membership of specific nodes. This micro-level interpretation step of community structure is a crucial step in typical social science research. However, the methodological caveat in this step is that virtually all modern community detection methods are non-deterministic and based on randomization and approximated results. This needs to be explicitly taken into consideration when reasoning about community membership of individual nodes. To do so, we propose a metric of community membership consistency, that provides node-level insights in how reliable the placement of that node into a community really is. In addition, it enables us to distinguish the community core members of a community. The usefulness of the proposed metrics is demonstrated on corporate board interlock networks, in which weighted links represent shared senior level directors between firms. Results suggest that the community structure of global business groups is centered around persistent communities consisting of core countries tied by geographical and cultural proximity. In addition, we identify fringe countries that appear to associate with a number of different global business communities.

Keywords: Board interlocks; Interlocking directorates; Community detection; Network analysis; Modularity (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s42001-021-00145-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcsosc:v:5:y:2022:i:1:d:10.1007_s42001-021-00145-5

Ordering information: This journal article can be ordered from
http://www.springer. ... iences/journal/42001

DOI: 10.1007/s42001-021-00145-5

Access Statistics for this article

Journal of Computational Social Science is currently edited by Takashi Kamihigashi

More articles in Journal of Computational Social Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcsosc:v:5:y:2022:i:1:d:10.1007_s42001-021-00145-5