Modeling economic migration on a global scale
Eva Dziadula,
John O’Hare,
Carl Colglazier,
Marie C. Clay and
Paul Brenner ()
Additional contact information
John O’Hare: University of Notre Dame
Carl Colglazier: Northwestern University
Marie C. Clay: University of Notre Dame
Paul Brenner: University of Notre Dame
Journal of Computational Social Science, 2023, vol. 6, issue 2, No 26, 1125-1145
Abstract:
Abstract We introduce a global-scale migration model centered on neoclassical economic migration theory and leveraging Python and Jupyter as the base modeling platform. Our goals focus on improving social scientists’ understanding of migration and their access to visually and computationally robust infrastructure. This will enhance a scientist’s capability to model complex macro-scale global effects and lay the groundwork for multi-scale models where countries, regions and individuals interact at differing timescales and per differing governing equations. Economic theory describes an agent’s migration decision as utility maximizing. The agent weighs the expected increase in utility associated with migration against the costs of moving to that destination. These costs include not only the explicit monetary costs of travel and visas, but also the implicit costs such as leaving family behind, political barriers to entry, the difficulty in learning a new language, and the unfamiliarity of a new culture, among others. In our model, any destination country in which an agent would have greater earnings (minus migration costs) than in the origin country is considered and agents maximize their expected earnings. Multiple public data sets from United Nations, International Monetary Fund, and World Bank are used to provide suitable initialization values for the model. Our Global Open Simulation (GOS) software has an open license and the data analyzed during the current study are available in the GOS public Github repository ( https://github.com/crcresearch/GOS ).
Keywords: Human migration; Population change; Jupyter; Python (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s42001-023-00226-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jcsosc:v:6:y:2023:i:2:d:10.1007_s42001-023-00226-7
Ordering information: This journal article can be ordered from
http://www.springer. ... iences/journal/42001
DOI: 10.1007/s42001-023-00226-7
Access Statistics for this article
Journal of Computational Social Science is currently edited by Takashi Kamihigashi
More articles in Journal of Computational Social Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().