EconPapers    
Economics at your fingertips  
 

Identifying early help referrals for local authorities with machine learning and bias analysis

Eufrásio de A. Lima Neto, Jonathan Bailiss, Axel Finke, Jo Miller and Georgina Cosma ()
Additional contact information
Eufrásio de A. Lima Neto: De Montfort University
Jonathan Bailiss: Loughborough University
Axel Finke: Loughborough University
Jo Miller: Leicestershire County Council
Georgina Cosma: Loughborough University

Journal of Computational Social Science, 2024, vol. 7, issue 1, No 15, 385-403

Abstract: Abstract Local authorities in England, such as Leicestershire County Council (LCC), provide Early Help services that can be offered at any point in a young person’s life when they experience difficulties that cannot be supported by universal services alone, such as schools. This paper investigates the utilisation of machine learning (ML) to assist experts in identifying families that may need to be referred for Early Help assessment and support. LCC provided an anonymised dataset comprising 14 360 records of young people under the age of 18. The dataset was pre-processed, ML models were developed, and experiments were conducted to validate and test the performance of the models. Bias-mitigation techniques were applied to improve the fairness of these models. During testing, while the models demonstrated the capability to identify young people requiring intervention or early help, they also produced a significant number of false positives, especially when constructed with imbalanced data, incorrectly identifying individuals who most likely did not need an Early Help referral. This paper empirically explores the suitability of data-driven ML models for identifying young people who may require Early Help services and discusses their appropriateness and limitations for this task.

Keywords: Machine learning; Social care; Bias analysis; Early help services (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s42001-023-00242-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcsosc:v:7:y:2024:i:1:d:10.1007_s42001-023-00242-7

Ordering information: This journal article can be ordered from
http://www.springer. ... iences/journal/42001

DOI: 10.1007/s42001-023-00242-7

Access Statistics for this article

Journal of Computational Social Science is currently edited by Takashi Kamihigashi

More articles in Journal of Computational Social Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcsosc:v:7:y:2024:i:1:d:10.1007_s42001-023-00242-7