EconPapers    
Economics at your fingertips  
 

A modelling study to explore the effects of regional socio-economics on the spreading of epidemics

Jan E. Snellman, Rafael A. Barrio, Kimmo K. Kaski and Maarit J. Korpi–Lagg ()
Additional contact information
Jan E. Snellman: Aalto University School of Science
Rafael A. Barrio: Universidad Nacional Autónoma de México
Kimmo K. Kaski: Aalto University School of Science
Maarit J. Korpi–Lagg: Aalto University School of Science

Journal of Computational Social Science, 2024, vol. 7, issue 3, No 11, 2535-2562

Abstract: Abstract Epidemics, apart from affecting the health of populations, can have large impacts on their social and economic behavior and subsequently feed back to and influence the spreading of the disease. This calls for systematic investigation which factors affect significantly and either beneficially or adversely the disease spreading and regional socio-economics. Based on our recently developed hybrid agent-based socio-economy and epidemic spreading model we perform extensive exploration of its six-dimensional parameter space of the socio-economic part of the model, namely, the attitudes towards the spread of the pandemic, health and the economic situation for both, the population and government agents who impose regulations. We search for significant patterns from the resulting simulated data using basic classification tools, such as self-organizing maps and principal component analysis, and we monitor different quantities of the model output, such as infection rates, the propagation speed of the epidemic, economic activity, government regulations, and the compliance of population on government restrictions. Out of these, the ones describing the epidemic spreading were resulting in the most distinctive clustering of the data, and they were selected as the basis of the remaining analysis. We relate the found clusters to three distinct types of disease spreading: wave-like, chaotic, and transitional spreading patterns. The most important value parameter contributing to phase changes and the speed of the epidemic was found to be the compliance of the population agents towards the government regulations. We conclude that in compliant populations, the infection rates are significantly lower and the infection spreading is slower, while the population agents’ health and economical attitudes show a weaker effect.

Keywords: Hybrid Epidemic Modelling; Agent-based Social Simulation; Machine Learning Assisted Data Analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s42001-024-00322-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jcsosc:v:7:y:2024:i:3:d:10.1007_s42001-024-00322-2

Ordering information: This journal article can be ordered from
http://www.springer. ... iences/journal/42001

DOI: 10.1007/s42001-024-00322-2

Access Statistics for this article

Journal of Computational Social Science is currently edited by Takashi Kamihigashi

More articles in Journal of Computational Social Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jcsosc:v:7:y:2024:i:3:d:10.1007_s42001-024-00322-2