An alternating variable method for the maximal correlation problem
Lei-Hong Zhang () and
Li-Zhi Liao ()
Journal of Global Optimization, 2012, vol. 54, issue 1, 199-218
Abstract:
The maximal correlation problem (MCP) aiming at optimizing correlations between sets of variables plays an important role in many areas of statistical applications. Up to date, algorithms for the general MCP stop at solutions of the multivariate eigenvalue problem (MEP), which serves only as a necessary condition for the global maxima of the MCP. For statistical applications, the global maximizer is quite desirable. In searching the global solution of the MCP, in this paper, we propose an alternating variable method (AVM), which contains a core engine in seeking a global maximizer. We prove that (i) the algorithm converges globally and monotonically to a solution of the MEP, (ii) any convergent point satisfies a global optimal condition of the MCP, and (iii) whenever the involved matrix A is nonnegative irreducible, it converges globally to the global maximizer. These properties imply that the AVM is an effective approach to obtain a global maximizer of the MCP. Numerical testings are carried out and suggest a superior performance to the others, especially in finding a global solution of the MCP. Copyright Springer Science+Business Media, LLC. 2012
Keywords: Multivariate statistics; Canonical correlation; Maximal correlation problem; Multivariate eigenvalue problem; Power method; Gauss–Seidal method; Global maximizer; 62H20; 15A12; 65F10; 65K05 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-011-9758-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:54:y:2012:i:1:p:199-218
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-011-9758-2
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().