Regularized learning in Banach spaces as an optimization problem: representer theorems
Haizhang Zhang () and
Jun Zhang ()
Journal of Global Optimization, 2012, vol. 54, issue 2, 235-250
Abstract:
We view regularized learning of a function in a Banach space from its finite samples as an optimization problem. Within the framework of reproducing kernel Banach spaces, we prove the representer theorem for the minimizer of regularized learning schemes with a general loss function and a nondecreasing regularizer. When the loss function and the regularizer are differentiable, a characterization equation for the minimizer is also established. Copyright Springer Science+Business Media, LLC. 2012
Keywords: Reproducing kernel Banach spaces; Semi-inner products; Representer theorems; Regularization networks; Support vector machine classification (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-010-9575-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:54:y:2012:i:2:p:235-250
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-010-9575-z
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().