Duality and solutions for quadratic programming over single non-homogeneous quadratic constraint
Joe-Mei Feng,
Gang-Xuan Lin,
Reuy-Lin Sheu () and
Yong Xia
Journal of Global Optimization, 2012, vol. 54, issue 2, 275-293
Abstract:
This paper extends and completes the discussion by Xing et al. (Canonical dual solutions to the quadratic programming over a quadratic constraint, submitted) about the quadratic programming over one quadratic constraint (QP1QC). In particular, we relax the assumption to cover more general cases when the two matrices from the objective and the constraint functions can be simultaneously diagonalizable via congruence. Under such an assumption, the nonconvex (QP1QC) problem can be solved through a dual approach with no duality gap. This is unusual for general nonconvex programming but we can explain by showing that (QP1QC) is indeed equivalent to a linearly constrained convex problem, which happens to be dual of the dual of itself. Another type of hidden convexity can be also found in the boundarification technique developed in Xing et al. (Canonical dual solutions to the quadratic programming over a quadratic constraint, submitted). Copyright Springer Science+Business Media, LLC. 2012
Keywords: Non-convex quadratic programming; Simultaneously diagonalizable via congruence; Slater’s condition; Duality; Hidden convexity (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-010-9625-6 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:54:y:2012:i:2:p:275-293
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-010-9625-6
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().