EconPapers    
Economics at your fingertips  
 

Fenchel decomposition for stochastic mixed-integer programming

Lewis Ntaimo ()

Journal of Global Optimization, 2013, vol. 55, issue 1, 163 pages

Abstract: This paper introduces a new cutting plane method for two-stage stochastic mixed-integer programming (SMIP) called Fenchel decomposition (FD). FD uses a class of valid inequalities termed, FD cuts, which are derived based on Fenchel cutting planes from integer programming. First, we derive FD cuts based on both the first and second-stage variables, and devise an FD algorithm for SMIP and establish finite convergence for binary first-stage. Second, we derive FD cuts based on the second-stage variables only and use an idea from disjunctive programming to lift the cuts to the higher dimension space including the first-stage variables. We then devise an alternative algorithm (FD-L algorithm) based on the lifted FD cuts. Finally, we report on computational results based on several test instances from the literature involving the special structure of knapsack problems with nonnegative left-hand side coefficients. The results are promising and show that both algorithms can outperform a standard direct solver and a disjunctive decomposition algorithm on large-scale instances. Furthermore, the FD-L algorithm provides better performance than the FD algorithm in general. Since Fenchel cuts can be computationally expensive in general and are best suited for problems with special structure, both algorithms exploit the special structure of the test instances by reducing the size of the cut generation problems based on the number of nonzero components in the non-integer solution that needs to be cut off. Copyright Springer Science+Business Media, LLC. 2013

Keywords: Stochastic programming; Integer programming; Fenchel decomposition; FD cuts; Lifting (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-011-9817-8 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:55:y:2013:i:1:p:141-163

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-011-9817-8

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:55:y:2013:i:1:p:141-163