Differential evolution for dynamic environments with unknown numbers of optima
Mathys Plessis () and
Andries Engelbrecht ()
Journal of Global Optimization, 2013, vol. 55, issue 1, 73-99
Abstract:
This paper investigates optimization in dynamic environments where the numbers of optima are unknown or fluctuating. The authors present a novel algorithm, Dynamic Population Differential Evolution (DynPopDE), which is specifically designed for these problems. DynPopDE is a Differential Evolution based multi-population algorithm that dynamically spawns and removes populations as required. The new algorithm is evaluated on an extension of the Moving Peaks Benchmark. Comparisons with other state-of-the-art algorithms indicate that DynPopDE is an effective approach to use when the number of optima in a dynamic problem space is unknown or changing over time. Copyright Springer Science+Business Media, LLC. 2013
Keywords: Differential evolution; Dynamic environments; Competing populations; Moving peaks; Dynamic number of populations (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-012-9864-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:55:y:2013:i:1:p:73-99
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-012-9864-9
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().