New fitness sharing approach for multi-objective genetic algorithms
Hyoungjin Kim () and
Meng-Sing Liou
Journal of Global Optimization, 2013, vol. 55, issue 3, 579-595
Abstract:
A novel fitness sharing method for MOGA (Multi-Objective Genetic Algorithm) is proposed by combining a new sharing function and sided degradations in the sharing process, with preference to either of two close solutions. The modified MOGA adopting the new sharing approach is named as MOGAS. Three different variants of MOGAS are tested; MOGASc, MOGASp and MOGASd, favoring children over parents, parents over children and solutions closer to the ideal point, respectively. The variants of MOGAS are compared with MOGA and other state-of-the-art multi-objective evolutionary algorithms such as IBEA, HypE, NSGA-II and SPEA2. The new method shows significant performance improvements from MOGA and is very competitive against other Evolutionary Multi-objective Algorithms (EMOAs) for the ZDT and DTLZ test functions with two and three objectives. Among the three variants MOGASd is found to give the best results for the test problems. Copyright Springer Science+Business Media, LLC. 2013
Keywords: Genetic algorithms; Multi-objective optimization; Niching; Sharing Function (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-012-9966-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:55:y:2013:i:3:p:579-595
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-012-9966-4
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().