Characterizations of the nonemptiness and compactness for solution sets of convex set-valued optimization problems
Xiaoqi Huang and
J. Yao ()
Journal of Global Optimization, 2013, vol. 55, issue 3, 626 pages
Abstract:
In this paper, we first derive several characterizations of the nonemptiness and compactness for the solution set of a convex scalar set-valued optimization problem (with or without cone constraints) in which the decision space is finite-dimensional. The characterizations are expressed in terms of the coercivity of some scalar set-valued maps and the well-posedness of the set-valued optimization problem, respectively. Then we investigate characterizations of the nonemptiness and compactness for the weakly efficient solution set of a convex vector set-valued optimization problem (with or without cone constraints) in which the objective space is a normed space ordered by a nontrivial, closed and convex cone with nonempty interior and the decision space is finite-dimensional. We establish that the nonemptiness and compactness for the weakly efficient solution set of a convex vector set-valued optimization problem (with or without cone constraints) can be exactly characterized as those of a family of linearly scalarized convex set-valued optimization problems and the well-posedness of the original problem. Copyright Springer Science+Business Media, LLC. 2013
Keywords: Cone convex set-valued map; Set-valued optimization; Solution set; Weakly efficient solution; Well-posedness of optimization problem (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-012-9846-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:55:y:2013:i:3:p:611-626
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-012-9846-y
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().