A framework for optimization under limited information
Tansu Alpcan ()
Journal of Global Optimization, 2013, vol. 55, issue 3, 706 pages
Abstract:
In many real world problems, optimisation decisions have to be made with limited information. The decision maker may have no a priori or posteriori data about the often nonconvex objective function except from on a limited number of data points. The scarcity of data may be due to high cost of observation or fast-changing nature of the underlying system. This paper presents a “black-box” optimisation framework that takes into account the information collection, estimation, and optimisation aspects in a holistic and structured manner. Explicitly quantifying the observations at each optimisation step using the entropy measure from information theory, the often nonconvex-objective function to be optimised is modelled and estimated by adopting a Bayesian approach and using Gaussian processes as a state-of-the-art regression method. The resulting iterative scheme allows the decision maker to address the problem by expressing preferences for each aspect quantitatively and concurrently. Copyright Springer Science+Business Media, LLC. 2013
Keywords: Limited information; Active learning; Multi-objective optimization (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-012-9942-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:55:y:2013:i:3:p:681-706
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-012-9942-z
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().