Portfolio selection under model uncertainty: a penalized moment-based optimization approach
Jonathan Li () and
Roy Kwon ()
Journal of Global Optimization, 2013, vol. 56, issue 1, 164 pages
Abstract:
We present a new approach that enables investors to seek a reasonably robust policy for portfolio selection in the presence of rare but high-impact realization of moment uncertainty. In practice, portfolio managers face difficulty in seeking a balance between relying on their knowledge of a reference financial model and taking into account possible ambiguity of the model. Based on the concept of Distributionally Robust Optimization (DRO), we introduce a new penalty framework that provides investors flexibility to define prior reference models using the distributional information of the first two moments and accounts for model ambiguity in terms of extreme moment uncertainty. We show that in our approach a globally-optimal portfolio can in general be obtained in a computationally tractable manner. We also show that for a wide range of specifications our proposed model can be recast as semidefinite programs. Computational experiments show that our penalized moment-based approach outperforms classical DRO approaches in terms of both average and downside-risk performance using historical data. Copyright Springer Science+Business Media, LLC. 2013
Keywords: Portfolio selection; Model uncertainty; Distributionally robust optimization; Penalty method (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-012-9969-1 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:56:y:2013:i:1:p:131-164
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-012-9969-1
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().