EconPapers    
Economics at your fingertips  
 

The new robust conic GPLM method with an application to finance: prediction of credit default

Ayşe Özmen (), Gerhard-Wilhelm Weber, Zehra Çavuşoğlu and Özlem Defterli

Journal of Global Optimization, 2013, vol. 56, issue 2, 233-249

Abstract: This paper contributes to classification and identification in modern finance through advanced optimization. In the last few decades, financial misalignments and, thereby, financial crises have been increasing in numbers due to the rearrangement of the financial world. In this study, as one of the most remarkable of these, countries’ debt crises, which result from illiquidity, are tried to predict with some macroeconomic variables. The methodology consists of a combination of two predictive regression models, logistic regression and robust conic multivariate adaptive regression splines (RCMARS), as linear and nonlinear parts of a generalized partial linear model. RCMARS has an advantage of coping with the noise in both input and output data and of obtaining more consistent optimization results than CMARS. An advanced version of conic generalized partial linear model which includes robustification of the data set is introduced: robust conic generalized partial linear model (RCGPLM). This new model is applied on a data set that belongs to 45 emerging markets with 1,019 observations between the years 1980 and 2005. Copyright Springer Science+Business Media, LLC. 2013

Keywords: Predicting default probabilities; Uncertainty; Robust optimization; RCMARS; Robust conic generalized partial linear model (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-012-9902-7 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:56:y:2013:i:2:p:233-249

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-012-9902-7

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:56:y:2013:i:2:p:233-249