EconPapers    
Economics at your fingertips  
 

Efficient global optimization algorithm assisted by multiple surrogate techniques

Felipe Viana (), Raphael Haftka () and Layne Watson ()

Journal of Global Optimization, 2013, vol. 56, issue 2, 669-689

Abstract: Surrogate-based optimization proceeds in cycles. Each cycle consists of analyzing a number of designs, fitting a surrogate, performing optimization based on the surrogate, and finally analyzing a candidate solution. Algorithms that use the surrogate uncertainty estimator to guide the selection of the next sampling candidate are readily available, e.g., the efficient global optimization (EGO) algorithm. However, adding one single point at a time may not be efficient when the main concern is wall-clock time (rather than number of simulations) and simulations can run in parallel. Also, the need for uncertainty estimates limits EGO-like strategies to surrogates normally implemented with such estimates (e.g., kriging and polynomial response surface). We propose the multiple surrogate efficient global optimization (MSEGO) algorithm, which adds several points per optimization cycle with the help of multiple surrogates. We import uncertainty estimates from one surrogate to another to allow use of surrogates that do not provide them. The approach is tested on three analytic examples for nine basic surrogates including kriging, radial basis neural networks, linear Shepard, and six different instances of support vector regression. We found that MSEGO works well even with imported uncertainty estimates, delivering better results in a fraction of the optimization cycles needed by EGO. Copyright Springer Science+Business Media, LLC. 2013

Keywords: Surrogate-based optimization; Efficient global optimization algorithm; Kriging; Multiple surrogates (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-012-9892-5 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:56:y:2013:i:2:p:669-689

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-012-9892-5

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-17
Handle: RePEc:spr:jglopt:v:56:y:2013:i:2:p:669-689