Finding largest small polygons with GloptiPoly
Didier Henrion () and
Frédéric Messine ()
Journal of Global Optimization, 2013, vol. 56, issue 3, 1017-1028
Abstract:
A small polygon is a convex polygon of unit diameter. We are interested in small polygons which have the largest area for a given number of vertices n. Many instances are already solved in the literature, namely for all odd n, and for n = 4, 6 and 8. Thus, for even n ≥ 10, instances of this problem remain open. Finding those largest small polygons can be formulated as nonconvex quadratic programming problems which can challenge state-of-the-art global optimization algorithms. We show that a recently developed technique for global polynomial optimization, based on a semidefinite programming approach to the generalized problem of moments and implemented in the public-domain Matlab package GloptiPoly, can successfully find largest small polygons for n = 10 and n = 12. Therefore this significantly improves existing results in the domain. When coupled with accurate convex conic solvers, GloptiPoly can provide numerical guarantees of global optimality, as well as rigorous guarantees relying on interval arithmetic. Copyright Springer Science+Business Media, LLC. 2013
Keywords: Extremal convex polygons; Global optimization; Nonconvex quadratic programming; Semidefinite programming (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-011-9818-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:56:y:2013:i:3:p:1017-1028
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-011-9818-7
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().