EconPapers    
Economics at your fingertips  
 

Constrained derivative-free optimization on thin domains

J. Martínez () and F. Sobral ()

Journal of Global Optimization, 2013, vol. 56, issue 3, 1217-1232

Abstract: Many derivative-free methods for constrained problems are not efficient for minimizing functions on “thin” domains. Other algorithms, like those based on Augmented Lagrangians, deal with thin constraints using penalty-like strategies. When the constraints are computationally inexpensive but highly nonlinear, these methods spend many potentially expensive objective function evaluations motivated by the difficulties in improving feasibility. An algorithm that handles this case efficiently is proposed in this paper. The main iteration is split into two steps: restoration and minimization. In the restoration step, the aim is to decrease infeasibility without evaluating the objective function. In the minimization step, the objective function f is minimized on a relaxed feasible set. A global minimization result will be proved and computational experiments showing the advantages of this approach will be presented. Copyright Springer Science+Business Media, LLC. 2013

Keywords: Derivative-free optimization; Disconnected domains; Global convergence; Numerical experiments; Thin domains (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-012-9944-x (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:56:y:2013:i:3:p:1217-1232

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-012-9944-x

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:56:y:2013:i:3:p:1217-1232