On estimating workload in interval branch-and-bound global optimization algorithms
José Berenguel (),
L. Casado (),
I. García () and
Eligius Hendrix ()
Journal of Global Optimization, 2013, vol. 56, issue 3, 844 pages
Abstract:
In general, solving Global Optimization (GO) problems by Branch-and-Bound (B&B) requires a huge computational capacity. Parallel execution is used to speed up the computing time. As in this type of algorithms, the foreseen computational workload (number of nodes in the B&B tree) changes dynamically during the execution, the load balancing and the decision on additional processors is complicated. We use the term left-over to represent the number of nodes that still have to be evaluated at a certain moment during execution. In this work, we study new methods to estimate the left-over value based on the observed amount of pruning. This provides information about the remaining running time of the algorithm and the required computational resources. We focus on their use for interval B&B GO algorithms. Copyright The Author(s) 2013
Keywords: Global optimization; Interval Arithmetic; Branch-and-Bound; Workload prediction; Parallel algorithms (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-011-9771-5 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:56:y:2013:i:3:p:821-844
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-011-9771-5
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().