Convergence of a class of penalty methods for constrained scalar set-valued optimization
Xiaoqi Huang
Journal of Global Optimization, 2013, vol. 56, issue 4, 1513 pages
Abstract:
In this paper, we study a class of penalty methods for a class of constrained scalar set-valued optimization problems. We establish an equivalence relation between the lower semicontinuity at the origin of the optimal value function of the perturbed problem and the convergence of the penalty methods. Some sufficient conditions that guarantee the convergence of the penalty methods are also derived. Copyright Springer Science+Business Media, LLC. 2013
Keywords: Constrained scalar set-valued optimization; Penalty methods; Convergence; Lower semicontinuity of a function; Upper semicontinuity of a set-valued map (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-012-9910-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:56:y:2013:i:4:p:1501-1513
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-012-9910-7
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().