Analysing the scalability of multiobjective evolutionary algorithms when solving the motif discovery problem
David González-Álvarez () and
Miguel Vega-Rodríguez ()
Journal of Global Optimization, 2013, vol. 57, issue 2, 467-497
Abstract:
In this paper we analyse the scalability of seven multiobjective evolutionary algorithms when they solve large instances of a known biological problem, the motif discovery problem (MDP). The selected algorithms are a population-based and a trajectory-based algorithms (DEPT and MO-VNS, respectively), three swarm intelligence algorithms (MOABC, MO-FA, and MO-GSA), a genetic algorithm (NSGA-II), and SPEA2. The MDP is one of the most important sequence analysis problems related to discover common patterns, motifs, in DNA sequences. A motif is a nucleic acid sequence pattern that has some biological significance as being DNA binding sites for a regulatory protein, i.e., a transcription factor (TF). A biologically relevant motif must have a certain length, be found in many sequences, and present a high similarity among the subsequences which compose it. These three goals are in conflict with each other, therefore a multiobjective approach is a good way of facing the MDP. In addition, in recent years, scientists are decoding genomes of many organisms, increasing the computational workload of the algorithms. Therefore, we need algorithms that are able to deal with these new large DNA instances. The obtained experimental results suggest that MOABC and MO-FA are the algorithms with the best scalability behaviours. Copyright Springer Science+Business Media New York 2013
Keywords: Computer science; Scalability analysis; Multiobjective programming; Evolutionary algorithm; DNA (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-013-0069-7 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:57:y:2013:i:2:p:467-497
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-013-0069-7
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().