New existence theorems for quasi-equilibrium problems and a minimax theorem on complete metric spaces
Chih-Sheng Chuang () and
Lai-Jiu Lin ()
Journal of Global Optimization, 2013, vol. 57, issue 2, 533-547
Abstract:
Motivated by the Suzuki’s type fixed point theorems, we give several new existence theorems for scalar quasi-equilibrium problems, and vector quasi-equilibrium problem on complete metric spaces. We give important examples for our results. Note that the solution of quasi-equilibrium problem (resp. vector quasi-equilibrium problem) is unique under suitable conditions, and we can find the unique solution by the Picard iteration. Besides, we also give a new coincidence theorem on complete metric spaces. Finally, we give a new minimax theorem on complete metric spaces. Note that the solution of minimax theorem is unique under suitable conditions, and we can find the unique solution by the Picard iteration. Copyright Springer Science+Business Media New York 2013
Keywords: Fixed point; Equilibrium problem; Quasi-equilibrium problem; Minimax theorem (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-012-0004-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:57:y:2013:i:2:p:533-547
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-012-0004-3
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().