Optimization challenges in the structured low rank approximation problem
Jonathan Gillard () and
Anatoly Zhigljavsky ()
Journal of Global Optimization, 2013, vol. 57, issue 3, 733-751
Abstract:
In this paper we illustrate some optimization challenges in the structured low rank approximation (SLRA) problem. SLRA can be described as the problem of finding a low rank approximation of an observed matrix which has the same structure as this matrix (such as Hankel). We demonstrate that the optimization problem arising is typically very difficult: in particular, the objective function is multiextremal even for simple cases. The main theme of the paper is to suggest that the difficulties described in approximating a solution of the SLRA problem open huge possibilities for the application of stochastic methods of global optimization. Copyright Springer Science+Business Media, LLC. 2013
Keywords: Structured low rank approximation; Hankel matrix; Global optimization; Cadzow iterations (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-012-9962-8 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:57:y:2013:i:3:p:733-751
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-012-9962-8
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().