Minimax theorems for scalar set-valued mappings with nonconvex domains and applications
Y. Zhang () and
Shuanming Li
Journal of Global Optimization, 2013, vol. 57, issue 4, 1359-1373
Abstract:
In this paper, by virtue of the separation theorem of convex sets, we prove a minimax theorem, a cone saddle point theorem and a Ky Fan minimax theorem for a scalar set-valued mapping under nonconvex assumptions of its domains, respectively. As applications, we obtain an existence result for the generalized vector equilibrium problem with a set-valued mapping. Simultaneously, we also obtain some generalized Ky Fan minimax theorems for set-valued mappings, in which the minimization and the maximization of set-valued mappings are taken in the sense of vector optimization. Copyright Springer Science+Business Media New York 2013
Keywords: Minimax theorem; Cone saddle point; Vector optimization; Set-valued mapping; 49J35; 49K35; 90C47 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-012-9992-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:57:y:2013:i:4:p:1359-1373
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-012-9992-2
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().