Levitin–Polyak well-posedness for constrained quasiconvex vector optimization problems
C. Lalitha () and
Prashanto Chatterjee ()
Journal of Global Optimization, 2014, vol. 59, issue 1, 205 pages
Abstract:
In this paper, a notion of Levitin–Polyak (LP in short) well-posedness is introduced for a vector optimization problem in terms of minimizing sequences and efficient solutions. Sufficient conditions for the LP well-posedness are studied under the assumptions of compactness of the feasible set, closedness of the set of minimal solutions and continuity of the objective function. The continuity assumption is then weakened to cone lower semicontinuity for vector-valued functions. A notion of LP minimizing sequence of sets is studied to establish another set of sufficient conditions for the LP well-posedness of the vector problem. For a quasiconvex vector optimization problem, sufficient conditions are obtained by weakening the compactness of the feasible set to a certain level-boundedness condition. This in turn leads to the equivalence of LP well-posedness and compactness of the set of efficient solutions. Some characterizations of LP well-posedness are given in terms of the upper Hausdorff convergence of the sequence of sets of approximate efficient solutions and the upper semicontinuity of an approximate efficient map by assuming the compactness of the set of efficient solutions, even when the objective function is not necessarily quasiconvex. Finally, a characterization of LP well-posedness in terms of the closedness of the approximate efficient map is provided by assuming the compactness of the feasible set. Copyright Springer Science+Business Media New York 2014
Keywords: Levitin–Polyak well-posedness; Quasiconvexity; Efficiency; Upper semicontinuity; Hausdorff convergence; 49K40; 90C26; 90C29 (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-013-0103-9 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:59:y:2014:i:1:p:191-205
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-013-0103-9
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().