Lattice preconditioning for the real relaxation branch-and-bound approach for integer least squares problems
Miguel Anjos (),
Xiao-Wen Chang () and
Wen-Yang Ku ()
Journal of Global Optimization, 2014, vol. 59, issue 2, 227-242
Abstract:
The integer least squares problem is an important problem that arises in numerous applications. We propose a real relaxation-based branch-and-bound (RRBB) method for this problem. First, we define a quantity called the distance to integrality, propose it as a measure of the number of nodes in the RRBB enumeration tree, and provide computational evidence that the size of the RRBB tree is proportional to this distance. Since we cannot know the distance to integrality a priori, we prove that the norm of the Moore–Penrose generalized inverse of the matrix of coefficients is a key factor for bounding this distance, and then we propose a preconditioning method to reduce this norm using lattice reduction techniques. We also propose a set of valid box constraints that help accelerate the RRBB method. Our computational results show that the proposed preconditioning significantly reduces the size of the RRBB enumeration tree, that the preconditioning combined with the proposed set of box constraints can significantly reduce the computational time of RRBB, and that the resulting RRBB method can outperform the Schnorr and Eucher method, a widely used method for solving integer least squares problems, on some types of problem data. Copyright Springer Science+Business Media New York 2014
Keywords: Integer least squares; Branch-and-bound methods; Lattice reduction; Preconditioning; Box constraints (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-014-0148-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:59:y:2014:i:2:p:227-242
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-014-0148-4
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().