Sparse optimization in feature selection: application in neuroimaging
K. Kampa (),
S. Mehta (),
C. Chou (),
W. Chaovalitwongse () and
T. Grabowski ()
Journal of Global Optimization, 2014, vol. 59, issue 2, 439-457
Abstract:
Feature selection plays an important role in the successful application of machine learning techniques to large real-world datasets. Avoiding model overfitting, especially when the number of features far exceeds the number of observations, requires selecting informative features and/or eliminating irrelevant ones. Searching for an optimal subset of features can be computationally expensive. Functional magnetic resonance imaging (fMRI) produces datasets with such characteristics creating challenges for applying machine learning techniques to classify cognitive states based on fMRI data. In this study, we present an embedded feature selection framework that integrates sparse optimization for regularization (or sparse regularization) and classification. This optimization approach attempts to maximize training accuracy while simultaneously enforcing sparsity by penalizing the objective function for the coefficients of the features. This process allows many coefficients to become zero, which effectively eliminates their corresponding features from the classification model. To demonstrate the utility of the approach, we apply our framework to three different real-world fMRI datasets. The results show that regularized classifiers yield better classification accuracy, especially when the number of initial features is large. The results further show that sparse regularization is key to achieving scientifically-relevant generalizability and functional localization of classifier features. The approach is thus highly suited for analysis of fMRI data. Copyright Springer Science+Business Media New York 2014
Keywords: Sparse optimization; Feature selection; Machine learning; fMRI; Cognitive neuroscience; Regularization; Pattern classification (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-013-0134-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:59:y:2014:i:2:p:439-457
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-013-0134-2
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().