Global optimization of general nonconvex problems with intermediate polynomial substructures
Keith Zorn and
Nikolaos Sahinidis ()
Journal of Global Optimization, 2014, vol. 59, issue 2, 673-693
Abstract:
This work considers the global optimization of general nonconvex nonlinear and mixed-integer nonlinear programming problems with underlying polynomial substructures. We incorporate linear cutting planes inspired by reformulation-linearization techniques to produce tight subproblem formulations that exploit these underlying structures. These cutting plane strategies simultaneously convexify linear and nonlinear terms from multiple constraints and are highly effective at tightening standard linear programming relaxations generated by sequential factorable programming techniques. Because the number of available cutting planes increases exponentially with the number of variables, we implement cut filtering and selection strategies to prevent an exponential increase in relaxation size. We introduce algorithms for polynomial substructure detection, cutting plane identification, cut filtering, and cut selection and embed the proposed implementation in BARON at every node in the branch-and-bound tree. A computational study including randomly generated problems of varying size and complexity demonstrates that the exploitation of underlying polynomial substructures significantly reduces computational time, branch-and-bound tree size, and required memory. Copyright Springer Science+Business Media New York 2014
Keywords: Branch-and-bound global optimization; Factorable polyhedral relaxation; Reformulation-linearization techniques; Polynomial programming (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-014-0190-2 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:59:y:2014:i:2:p:673-693
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-014-0190-2
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().