Level bundle-like algorithms for convex optimization
J. Bello Cruz () and
W. Oliveira ()
Journal of Global Optimization, 2014, vol. 59, issue 4, 787-809
Abstract:
We propose two restricted memory level bundle-like algorithms for minimizing a convex function over a convex set. If the memory is restricted to one linearization of the objective function, then both algorithms are variations of the projected subgradient method. The first algorithm, proposed in Hilbert space, is a conceptual one. It is shown to be strongly convergent to the solution that lies closest to the initial iterate. Furthermore, the entire sequence of iterates generated by the algorithm is contained in a ball with diameter equal to the distance between the initial point and the solution set. The second algorithm is an implementable version. It mimics as much as possible the conceptual one in order to resemble convergence properties. The implementable algorithm is validated by numerical results on several two-stage stochastic linear programs. Copyright Springer Science+Business Media New York 2014
Keywords: Convex minimization; Nonsmooth optimization; Level bundle method; Strong convergence (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-013-0096-4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:59:y:2014:i:4:p:787-809
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-013-0096-4
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().