EconPapers    
Economics at your fingertips  
 

A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm

Ana Ruiz (), Rubén Saborido () and Mariano Luque ()

Journal of Global Optimization, 2015, vol. 62, issue 1, 129 pages

Abstract: When solving multiobjective optimization problems, preference-based evolutionary multiobjective optimization (EMO) algorithms introduce preference information into an evolutionary algorithm in order to focus the search for objective vectors towards the region of interest of the Pareto optimal front. In this paper, we suggest a preference-based EMO algorithm called weighting achievement scalarizing function genetic algorithm (WASF-GA), which considers the preferences of the decision maker (DM) expressed by means of a reference point. The main purpose of WASF-GA is to approximate the region of interest of the Pareto optimal front determined by the reference point, which contains the Pareto optimal objective vectors that obey the preferences expressed by the DM in the best possible way. The proposed approach is based on the use of an achievement scalarizing function (ASF) and on the classification of the individuals into several fronts. At each generation of WASF-GA, this classification is done according to the values that each solution takes on the ASF for the reference point and using different weight vectors. These vectors of weights are selected so that the vectors formed by their inverse components constitute a well-distributed representation of the weight vectors space. The efficiency and usefulness of WASF-GA is shown in several test problems in comparison to other preference-based EMO algorithms. Regarding a metric based on the hypervolume, we can say that WASF-GA has outperformed the other algorithms considered in most of the problems. Copyright Springer Science+Business Media New York 2015

Keywords: Multiobjective optimization; Pareto optimal solutions; Reference point approach; Achievement scalarizing function; Evolutionary algorithm (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-014-0214-y (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:62:y:2015:i:1:p:101-129

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-014-0214-y

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:62:y:2015:i:1:p:101-129