EconPapers    
Economics at your fingertips  
 

Smoothing augmented Lagrangian method for nonsmooth constrained optimization problems

Mengwei Xu (), Jane Ye () and Liwei Zhang ()

Journal of Global Optimization, 2015, vol. 62, issue 4, 675-694

Abstract: In this paper, we propose a smoothing augmented Lagrangian method for finding a stationary point of a nonsmooth and nonconvex optimization problem. We show that any accumulation point of the iteration sequence generated by the algorithm is a stationary point provided that the penalty parameters are bounded. Furthermore, we show that a weak version of the generalized Mangasarian Fromovitz constraint qualification (GMFCQ) at the accumulation point is a sufficient condition for the boundedness of the penalty parameters. Since the weak GMFCQ may be strictly weaker than the GMFCQ, our algorithm is applicable for an optimization problem for which the GMFCQ does not hold. Numerical experiments show that the algorithm is efficient for finding stationary points of general nonsmooth and nonconvex optimization problems, including the bilevel program which will never satisfy the GMFCQ. Copyright Springer Science+Business Media New York 2015

Keywords: Nonsmooth optimization; Constrained optimization; Smoothing function; Augmented Lagrangian method; Constraint qualification; Bilevel program; 65K10; 90C26 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-014-0242-7 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:62:y:2015:i:4:p:675-694

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-014-0242-7

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:62:y:2015:i:4:p:675-694