Optimal control problems with stopping constraints
Qun Lin (),
Ryan Loxton (),
Kok Teo () and
Yong Wu ()
Journal of Global Optimization, 2015, vol. 63, issue 4, 835-861
Abstract:
We consider a novel optimal control problem in which the terminal time is governed by a stopping constraint. This stopping constraint is a nonlinear equality constraint depending on the state variables, and the terminal time is defined as the first time at which this constraint is satisfied. Since the stopping constraint causes the terminal time to be an implicit function of the control, the optimal control problem we consider cannot be solved using conventional techniques. We propose a new computational approach that involves approximating the original problem by a standard optimal control problem with fixed terminal time. Our main result shows that this approximation, which depends on two adjustable parameters, can be made to arbitrarily high accuracy. On this basis, the original optimal control problem with stopping constraints can be transformed into a sequence of approximate problems, each of which can be solved readily using conventional optimal control techniques. We conclude the paper by demonstrating this approach with numerical simulations in three application areas: range maximization of a hang glider, range maximization of a hypersonic re-entry vehicle, and time-optimal control of a nuclear reactor. Copyright Springer Science+Business Media New York 2015
Keywords: Nonlinear optimal control; Time-optimal control; Stopping constraint; Continuous inequality constraint; Time-scaling transformation (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-015-0286-3 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:63:y:2015:i:4:p:835-861
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-015-0286-3
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().