Gradient-constrained discounted Steiner trees II: optimally locating a discounted Steiner point
K. Sirinanda (),
M. Brazil,
P. Grossman,
J. Rubinstein and
D. Thomas
Journal of Global Optimization, 2016, vol. 64, issue 3, 515-532
Abstract:
A gradient-constrained discounted Steiner tree is a network interconnecting given set of nodes in Euclidean space where the gradients of the edges are all no more than an upper bound which defines the maximum gradient. In such a tree, the costs are associated with its edges and values are associated with nodes and are discounted over time. In this paper, we study the problem of optimally locating a single Steiner point in the presence of the gradient constraint in a tree so as to maximize the sum of all the discounted cash flows, known as the net present value (NPV). An edge in the tree is labelled as a b edge, or a m edge, or an f edge if the gradient between its endpoints is greater than, or equal to, or less than the maximum gradient respectively. The set of edge labels at a discounted Steiner point is called its labelling. The optimal location of the discounted Steiner point is obtained for the labellings that can occur in a gradient-constrained discounted Steiner tree. In this paper, we propose the gradient-constrained discounted Steiner point algorithm to optimally locate the discounted Steiner point in the presence of a gradient constraint in a network. This algorithm is applied to a case study. This problem occurs in underground mining, where we focus on the optimization of underground mine access to obtain maximum NPV in the presence of a gradient constraint. The gradient constraint defines the navigability conditions for trucks along the underground tunnels. Copyright Springer Science+Business Media New York 2016
Keywords: Gradient constraint; Network optimization; Optimal mine design; Net present value; Steiner points (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10898-015-0325-0 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:64:y:2016:i:3:p:515-532
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-015-0325-0
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().