EconPapers    
Economics at your fingertips  
 

MONEDA: scalable multi-objective optimization with a neural network-based estimation of distribution algorithm

Luis Martí (), Jesús García (), Antonio Berlanga () and José M. Molina ()
Additional contact information
Luis Martí: Universidade Federal Flumense
Jesús García: Universidad Carlos III de Madrid
Antonio Berlanga: Universidad Carlos III de Madrid
José M. Molina: Universidad Carlos III de Madrid

Journal of Global Optimization, 2016, vol. 66, issue 4, No 6, 729-768

Abstract: Abstract The extension of estimation of distribution algorithms (EDAs) to the multi-objective domain has led to multi-objective optimization EDAs (MOEDAs). Most MOEDAs have limited themselves to porting single-objective EDAs to the multi-objective domain. Although MOEDAs have proved to be a valid approach, the last point is an obstacle to the achievement of a significant improvement regarding “standard” multi-objective optimization evolutionary algorithms. Adapting the model-building algorithm is one way to achieve a substantial advance. Most model-building schemes used so far by EDAs employ off-the-shelf machine learning methods. However, the model-building problem has particular requirements that those methods do not meet and even evade. The focus of this paper is on the model-building issue and how it has not been properly understood and addressed by most MOEDAs. We delve down into the roots of this matter and hypothesize about its causes. To gain a deeper understanding of the subject we propose a novel algorithm intended to overcome the drawbacks of current MOEDAs. This new algorithm is the multi-objective neural estimation of distribution algorithm (MONEDA). MONEDA uses a modified growing neural gas network for model-building (MB-GNG). MB-GNG is a custom-made clustering algorithm that meets the above demands. Thanks to its custom-made model-building algorithm, the preservation of elite individuals and its individual replacement scheme, MONEDA is capable of scalably solving continuous multi-objective optimization problems. It performs better than similar algorithms in terms of a set of quality indicators and computational resource requirements.

Keywords: Multi-objective optimization problems; Estimation of distribution algorithms; Model-building problem; Neural networks; Growing neural gas (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10898-016-0415-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:66:y:2016:i:4:d:10.1007_s10898-016-0415-7

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-016-0415-7

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:66:y:2016:i:4:d:10.1007_s10898-016-0415-7