An approach to generate comprehensive piecewise linear interpolation of pareto outcomes to aid decision making
Kalyan Shankar Bhattacharjee (),
Hemant Kumar Singh () and
Tapabrata Ray ()
Additional contact information
Kalyan Shankar Bhattacharjee: The University of New South Wales
Hemant Kumar Singh: The University of New South Wales
Tapabrata Ray: The University of New South Wales
Journal of Global Optimization, 2017, vol. 68, issue 1, No 4, 93 pages
Abstract:
Abstract Multiple criteria decision making is a well established field encompassing aspects of search for solutions and selection of solutions in presence of more than one conflicting objectives. In this paper, we discuss an approach aimed towards the latter. The decision maker is presented with a limited number of Pareto optimal outcomes and is required to identify regions of interest for further investigation. The inherent sparsity of the given Pareto optimal outcomes in high dimensional space makes it an arduous task for the decision maker. To address this problem, an existing line of thought in literature is to generate a set of approximated Pareto optimal outcomes using piecewise linear interpolation. We present an approach within this paradigm, but one that delivers a comprehensive linearly interpolated set as opposed to its subset delivered by existing methods. We illustrate the advantage in doing so in comparison to stricter non-dominance conditions imposed in existing PAreto INTerpolation method. The interpolated set of outcomes delivered by the proposed approach are non-dominated with respect to the given Pareto optimal outcomes, and additionally the interpolated outcomes along uniformly distributed reference directions are presented to the decision maker. The errors in the given interpolations are also estimated in order to further aid decision making by establishing confidence in achieving true Pareto outcomes in their vicinity. The proposed approach for interpolation is computationally less demanding (for higher number of objectives) and also further amenable to parallelization. We illustrate the performance of the approach using six well established tri-objective test problems and two real-life examples. The problems span different types of fronts, such as convex, concave, mixed, degenerate, highlighting the wide applicability of the approach.
Keywords: Pareto front approximation; Linear interpolation; Decision making (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10898-016-0454-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:68:y:2017:i:1:d:10.1007_s10898-016-0454-0
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-016-0454-0
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().