EconPapers    
Economics at your fingertips  
 

Equal Risk Bounding is better than Risk Parity for portfolio selection

Francesco Cesarone () and Fabio Tardella ()
Additional contact information
Francesco Cesarone: Università degli Studi Roma Tre
Fabio Tardella: Sapienza Università di Roma

Journal of Global Optimization, 2017, vol. 68, issue 2, No 10, 439-461

Abstract: Abstract Risk Parity (RP), also called equally weighted risk contribution, is a recent approach to risk diversification for portfolio selection. RP is based on the principle that the fractions of the capital invested in each asset should be chosen so as to make the total risk contributions of all assets equal among them. We show here that the Risk Parity approach is theoretically dominated by an alternative similar approach that does not actually require equally weighted risk contribution of all assets but only an equal upper bound on all such risks. This alternative approach, called Equal Risk Bounding (ERB), requires the solution of a nonconvex quadratically constrained optimization problem. The ERB approach, while starting from different requirements, turns out to be strictly linked to the RP approach. Indeed, when short selling is allowed, we prove that an ERB portfolio is actually an RP portfolio with minimum variance. When short selling is not allowed, there is a unique RP portfolio and it contains all assets in the market. In this case, the ERB approach might lead to the RP portfolio or it might lead to portfolios with smaller variance that do not contain all assets, and where the risk contributions of each asset included in the portfolio is strictly smaller than in the RP portfolio. We define a new riskiness index for assets that allows to identify those assets that are more likely to be excluded from the ERB portfolio. With these tools we then provide an exact method for small size nonconvex ERB models and a very efficient and accurate heuristic for larger problems of this type. In the case of a common constant pairwise correlation among all assets, a closed form solution to the ERB model is obtained and used to perform a parametric analysis when varying the level of correlation. The practical advantages of the ERB approach over the RP strategy are illustrated with some numerical examples. Computational experience on real-world and on simulated data confirms accuracy and efficiency of our heuristic approach to the ERB model also in comparison with some state-of-the-art local and global optimization codes.

Keywords: Portfolio optimization; Risk diversification; Risk Parity; Non-convex quadratically constrained optimization; Nonlinear 0–1 optimization (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://link.springer.com/10.1007/s10898-016-0477-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:68:y:2017:i:2:d:10.1007_s10898-016-0477-6

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-016-0477-6

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:68:y:2017:i:2:d:10.1007_s10898-016-0477-6