EconPapers    
Economics at your fingertips  
 

iGreen: green scheduling for peak demand minimization

Shaojie Tang (), Jing Yuan (), Zhao Zhang () and Ding-zhu Du ()
Additional contact information
Shaojie Tang: University of Texas at Dallas
Jing Yuan: University of Texas at Dallas
Zhao Zhang: Zhejiang Normal University
Ding-zhu Du: University of Texas at Dallas

Journal of Global Optimization, 2017, vol. 69, issue 1, No 3, 45-67

Abstract: Abstract Home owners are typically charged differently when they consume power at different periods within a day. Specifically, they are charged more during peak periods. Thus, in this paper, we explore how scheduling algorithms can be designed to minimize the peak energy consumption of a group of homes served by the same substation. We assume that a set of demand/response switches are deployed at a group of homes to control the activities of different appliances such as air conditioners or electric water heaters in these homes. Given a set of appliances, each appliance is associated with its instantaneous power consumption and duration, our objective is to decide when to activate different appliances in order to reduce the peak power consumption. This scheduling problem is shown to be NP-Hard. To tackle this problem, we propose a set of appliance scheduling algorithms under both offline and online settings. For the offline setting, we propose a constant ratio approximation algorithm (with approximation ratio $$\frac{1+\sqrt{5}}{2}+1$$ 1 + 5 2 + 1 ). For the online setting, we adopt a greedy algorithm whose competitive ratio is also bounded. We conduct extensive simulations using real-life appliance energy consumption data trace to evaluate the performance of our algorithms. Extensive evaluations show that our schedulers significantly reduce the peak demand when compared with several existing heuristics.

Keywords: Smart grid; Scheduling; Peak demand reduction; Online scheduling (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s10898-017-0524-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:69:y:2017:i:1:d:10.1007_s10898-017-0524-y

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-017-0524-y

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:69:y:2017:i:1:d:10.1007_s10898-017-0524-y