Deterministic global optimization of process flowsheets in a reduced space using McCormick relaxations
Dominik Bongartz and
Alexander Mitsos ()
Additional contact information
Dominik Bongartz: RWTH Aachen University
Alexander Mitsos: RWTH Aachen University
Journal of Global Optimization, 2017, vol. 69, issue 4, No 1, 796 pages
Abstract:
Abstract Deterministic global methods for flowsheet optimization have almost exclusively relied on an equation-oriented formulation where all model variables are controlled by the optimizer and all model equations are considered as equality constraints, which results in very large optimization problems. A possible alternative is a reduced-space formulation similar to the sequential modular infeasible path method employed in local flowsheet optimization. This approach exploits the structure of the model equations to achieve a reduction in problem size. The optimizer only operates on a small subset of the model variables and handles only few equality constraints, while the majority is hidden in externally defined functions from which function values and relaxations for the objective function and constraints can be queried. Tight relaxations and their subgradients for these external functions can be provided through the automatic propagation of McCormick relaxations. Three steam power cycles of increasing complexity are used as case studies to evaluate the different formulations. Unlike in local optimization or in previous sequential approaches relying on interval methods, the solution of the reduced-space formulation using McCormick relaxations enables dramatic reductions in computational time compared to the conventional equation-oriented formulation. Despite the simplicity of the implemented branch-and-bound solver that does not fully exploit the tight relaxations returned by the external functions but relies on further affine relaxation at a single point using the subgradients, in some cases it can solve the reduced-space formulation significantly faster without any range reduction than the state-of-the-art solver BARON can solve the equation-oriented formulation.
Keywords: Global optimization; Process design; Sequential modular; Branch-and-bound; Relaxation of algorithms (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://link.springer.com/10.1007/s10898-017-0547-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:69:y:2017:i:4:d:10.1007_s10898-017-0547-4
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-017-0547-4
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().