An adaptive framework for costly black-box global optimization based on radial basis function interpolation
Zhe Zhou () and
Fusheng Bai ()
Additional contact information
Zhe Zhou: Chongqing Normal University
Fusheng Bai: Chongqing Normal University
Journal of Global Optimization, 2018, vol. 70, issue 4, No 4, 757-781
Abstract:
Abstract In this paper, we present a framework for the global optimization of costly black-box functions using response surface (RS) models. The main iteration steps of the framework which is referred to as the Adaptive Framework using Response Surface (ADFRS) consist of two phases. In the first phase, we implement a mixture of local searches and global searches to get a rough solution before the number of consecutive unsuccessful iterations exceeds a user-defined threshold. A procedure is embedded into this phase to check whether a small neighborhood of a global minimizer of the current RS model is fully explored or not, and then determine the search type (global search or local search) to be implemented next. Before performing a local search or a global search, the distance between the two global minimizers of the last and the current response surface models is checked, and the current global minimizer will be taken as the new evaluation point if this distance is very small. This strategy can quickly return a good evaluation point. In the second phase, we perform pure local search in the vicinity of the current best point to search for a better solution. Local searches are only implemented in the vicinities of the global minima of the RBF models in our scheme. Numerical experiments on some test problems are conducted to show the effectiveness of the present algorithm.
Keywords: Global optimization; Costly black-box functions; Response surface model; Radial basis function interpolation; Local search; Global search (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10898-017-0599-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:70:y:2018:i:4:d:10.1007_s10898-017-0599-5
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-017-0599-5
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().