GOSH: derivative-free global optimization using multi-dimensional space-filling curves
Daniela Lera and
Yaroslav D. Sergeyev ()
Additional contact information
Daniela Lera: Università di Cagliari
Yaroslav D. Sergeyev: Università della Calabria and the Institute of High Performance Computing and Networking of the National Research Council of Italy
Journal of Global Optimization, 2018, vol. 71, issue 1, No 12, 193-211
Abstract:
Abstract Global optimization is a field of mathematical programming dealing with finding global (absolute) minima of multi-dimensional multiextremal functions. Problems of this kind where the objective function is non-differentiable, satisfies the Lipschitz condition with an unknown Lipschitz constant, and is given as a “black-box” are very often encountered in engineering optimization applications. Due to the presence of multiple local minima and the absence of differentiability, traditional optimization techniques using gradients and working with problems having only one minimum cannot be applied in this case. These real-life applied problems are attacked here by employing one of the mostly abstract mathematical objects—space-filling curves. A practical derivative-free deterministic method reducing the dimensionality of the problem by using space-filling curves and working simultaneously with all possible estimates of Lipschitz and Hölder constants is proposed. A smart adaptive balancing of local and global information collected during the search is performed at each iteration. Conditions ensuring convergence of the new method to the global minima are established. Results of numerical experiments on 1000 randomly generated test functions show a clear superiority of the new method w.r.t. the popular method DIRECT and other competitors.
Keywords: Global optimization; Space-filling curves; Derivative-free methods; Acceleration; Lipschitz functions (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s10898-017-0589-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:71:y:2018:i:1:d:10.1007_s10898-017-0589-7
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-017-0589-7
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().