EconPapers    
Economics at your fingertips  
 

SDP-based branch-and-bound for non-convex quadratic integer optimization

Christoph Buchheim (), Maribel Montenegro () and Angelika Wiegele ()
Additional contact information
Christoph Buchheim: TU Dortmund
Maribel Montenegro: TU Dortmund
Angelika Wiegele: Alpen-Adria-Universität Klagenfurt

Journal of Global Optimization, 2019, vol. 73, issue 3, No 2, 485-514

Abstract: Abstract Semidefinite programming (SDP) relaxations have been intensively used for solving discrete quadratic optimization problems, in particular in the binary case. For the general non-convex integer case with box constraints, the branch-and-bound algorithm Q-MIST has been proposed by Buchheim and Wiegele (Math Program 141(1–2):435–452, 2013), which is based on an extension of the well-known SDP-relaxation for max-cut. For solving the resulting SDPs, Q-MIST uses an off-the-shelf interior point algorithm. In this paper, we present a tailored coordinate ascent algorithm for solving the dual problems of these SDPs. Building on related ideas of Dong (SIAM J Optim 26(3):1962–1985, 2016), it exploits the particular structure of the SDPs, most importantly a small rank of the constraint matrices. The latter allows both an exact line search and a fast incremental update of the inverse matrices involved, so that the entire algorithm can be implemented to run in quadratic time per iteration. Moreover, we describe how to extend this approach to a certain two-dimensional coordinate update. Finally, we explain how to include arbitrary linear constraints into this framework, and evaluate our algorithm experimentally.

Keywords: Quadratic integer programming; Semidefinite programming; Coordinate-wise optimization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10898-018-0717-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:73:y:2019:i:3:d:10.1007_s10898-018-0717-z

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-018-0717-z

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:73:y:2019:i:3:d:10.1007_s10898-018-0717-z