EconPapers    
Economics at your fingertips  
 

Necessary and sufficient conditions for achieving global optimal solutions in multiobjective quadratic fractional optimization problems

Washington Alves Oliveira (), Marko Antonio Rojas-Medar (), Antonio Beato-Moreno () and Maria Beatriz Hernández-Jiménez ()
Additional contact information
Washington Alves Oliveira: University of Campinas
Marko Antonio Rojas-Medar: Universidad de Tarapacá
Antonio Beato-Moreno: University of Sevilla
Maria Beatriz Hernández-Jiménez: Universidad Pablo de Olavide

Journal of Global Optimization, 2019, vol. 74, issue 2, No 2, 233-253

Abstract: Abstract If $$x^*$$ x ∗ is a local minimum solution, then there exists a ball of radius $$r>0$$ r > 0 such that $$f(x)\ge f(x^*)$$ f ( x ) ≥ f ( x ∗ ) for all $$x\in B(x^*,r)$$ x ∈ B ( x ∗ , r ) . The purpose of the current study is to identify the suitable $$B(x^*,r)$$ B ( x ∗ , r ) of the local optimal solution $$x^*$$ x ∗ for a particular multiobjective optimization problem. We provide a way to calculate the largest radius of the ball centered at local Pareto solution in which this solution is optimal. In this process, we present the necessary and sufficient conditions for achieving a global Pareto optimal solution. The results of this investigation might be useful to determine stopping criteria in the algorithms development.

Keywords: Pareto optimality conditions; Multiobjective optimization; Quadratic fractional optimization problems (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10898-019-00766-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:74:y:2019:i:2:d:10.1007_s10898-019-00766-1

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-019-00766-1

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:74:y:2019:i:2:d:10.1007_s10898-019-00766-1