Second order cone constrained convex relaxations for nonconvex quadratically constrained quadratic programming
Rujun Jiang () and
Duan Li ()
Additional contact information
Rujun Jiang: Fudan University
Duan Li: City University of Hong Kong
Journal of Global Optimization, 2019, vol. 75, issue 2, No 8, 494 pages
Abstract:
Abstract In this paper, we present new convex relaxations for nonconvex quadratically constrained quadratic programming (QCQP) problems. While recent research has focused on strengthening convex relaxations of QCQP using the reformulation-linearization technique (RLT), the state-of-the-art methods lose their effectiveness when dealing with (multiple) nonconvex quadratic constraints in QCQP, except for direct lifting and linearization. In this research, we decompose and relax each nonconvex constraint to two second order cone (SOC) constraints and then linearize the products of the SOC constraints and linear constraints to construct some new effective valid constraints. Moreover, we extend the reach of the RLT-like techniques for almost all different types of constraint-pairs (including valid inequalities by linearizing the product of a pair of SOC constraints, and the Hadamard product or the Kronecker product of two respective valid linear matrix inequalities), examine dominance relationships among different valid inequalities, and explore almost all possibilities of gaining benefits from generating valid constraints. We also successfully demonstrate that applying RLT-like techniques to additional redundant linear constraints could reduce the relaxation gap significantly. We demonstrate the efficiency of our results with numerical experiments.
Keywords: Nonconvex quadratically constrained quadratic programming; Convex relaxations; Reformulation-linearization technique; SOC-RLT; 90C20; 90C25; 90C2; 90C30 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s10898-019-00793-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:75:y:2019:i:2:d:10.1007_s10898-019-00793-y
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-019-00793-y
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().