A generalized Benders decomposition-based branch and cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary first and second stage variables
Can Li and
Ignacio E. Grossmann ()
Additional contact information
Can Li: Carnegie Mellon University
Ignacio E. Grossmann: Carnegie Mellon University
Journal of Global Optimization, 2019, vol. 75, issue 2, No 2, 247-272
Abstract:
Abstract In this paper, we propose a generalized Benders decomposition-based branch and cut algorithm for solving two stage stochastic mixed-integer nonlinear programs (SMINLPs) with mixed binary first and second stage variables. At a high level, the proposed decomposition algorithm performs spatial branch and bound search on the first stage variables. Each node in the branch and bound search is solved with a Benders-like decomposition algorithm where both Lagrangean cuts and Benders cuts are included in the Benders master problem. The Lagrangean cuts are derived from Lagrangean decomposition. The Benders cuts are derived from the Benders subproblems, which are convexified by cutting planes, such as rank-one lift-and-project cuts. We prove that the proposed algorithm converges in the limit. We apply the proposed algorithm to a stochastic pooling problem, a crude selection problem, and a storage design problem. The performance of the proposed algorithm is compared with a Lagrangean decomposition-based branch and bound algorithm and solving the corresponding deterministic equivalent with the solvers including BARON, ANTIGONE, and SCIP.
Keywords: Stochastic programming; Nonconvex MINLP; Generalized benders decomposition; Cutting planes (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1007/s10898-019-00816-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:75:y:2019:i:2:d:10.1007_s10898-019-00816-8
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-019-00816-8
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().