EconPapers    
Economics at your fingertips  
 

Incremental quasi-subgradient methods for minimizing the sum of quasi-convex functions

Yaohua Hu (), Carisa Kwok Wai Yu () and Xiaoqi Yang ()
Additional contact information
Yaohua Hu: Shenzhen University
Carisa Kwok Wai Yu: The Hang Seng University of Hong Kong
Xiaoqi Yang: The Hong Kong Polytechnic University

Journal of Global Optimization, 2019, vol. 75, issue 4, No 5, 1003-1028

Abstract: Abstract The sum of ratios problem has a variety of important applications in economics and management science, but it is difficult to globally solve this problem. In this paper, we consider the minimization problem of the sum of a number of nondifferentiable quasi-convex component functions over a closed and convex set. The sum of quasi-convex component functions is not necessarily to be quasi-convex, and so, this study goes beyond quasi-convex optimization. Exploiting the structure of the sum-minimization problem, we propose a new incremental quasi-subgradient method for this problem and investigate its convergence properties to a global optimal value/solution when using the constant, diminishing or dynamic stepsize rules and under a homogeneous assumption and the Hölder condition. To economize on the computation cost of subgradients of a large number of component functions, we further propose a randomized incremental quasi-subgradient method, in which only one component function is randomly selected to construct the subgradient direction at each iteration. The convergence properties are obtained in terms of function values and iterates with probability 1. The proposed incremental quasi-subgradient methods are applied to solve the quasi-convex feasibility problem and the sum of ratios problem, as well as the multiple Cobb–Douglas productions efficiency problem, and the numerical results show that the proposed methods are efficient for solving the large-scale sum of ratios problem.

Keywords: Quasi-convex programming; Sum-minimization problem; Sum of ratios problem; Subgradient method; Incremental approach (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s10898-019-00818-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:75:y:2019:i:4:d:10.1007_s10898-019-00818-6

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-019-00818-6

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:75:y:2019:i:4:d:10.1007_s10898-019-00818-6