EconPapers    
Economics at your fingertips  
 

Subset selection for multiple linear regression via optimization

Young Woong Park () and Diego Klabjan
Additional contact information
Young Woong Park: Iowa State University
Diego Klabjan: Northwestern University

Journal of Global Optimization, 2020, vol. 77, issue 3, No 5, 543-574

Abstract: Abstract Subset selection in multiple linear regression aims to choose a subset of candidate explanatory variables that tradeoff fitting error (explanatory power) and model complexity (number of variables selected). We build mathematical programming models for regression subset selection based on mean square and absolute errors, and minimal-redundancy–maximal-relevance criteria. The proposed models are tested using a linear-program-based branch-and-bound algorithm with tailored valid inequalities and big M values and are compared against the algorithms in the literature. For high dimensional cases, an iterative heuristic algorithm is proposed based on the mathematical programming models and a core set concept, and a randomized version of the algorithm is derived to guarantee convergence to the global optimum. From the computational experiments, we find that our models quickly find a quality solution while the rest of the time is spent to prove optimality; the iterative algorithms find solutions in a relatively short time and are competitive compared to state-of-the-art algorithms; using ad-hoc big M values is not recommended.

Keywords: Multiple linear regression; Subset selection; High dimensional data; Mathematical programming; Linearization (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10898-020-00876-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:77:y:2020:i:3:d:10.1007_s10898-020-00876-1

Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898

DOI: 10.1007/s10898-020-00876-1

Access Statistics for this article

Journal of Global Optimization is currently edited by Sergiy Butenko

More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:jglopt:v:77:y:2020:i:3:d:10.1007_s10898-020-00876-1