Generalized risk parity portfolio optimization: an ADMM approach
Giorgio Costa () and
Roy H. Kwon ()
Additional contact information
Giorgio Costa: University of Toronto
Roy H. Kwon: University of Toronto
Journal of Global Optimization, 2020, vol. 78, issue 1, No 10, 207-238
Abstract:
Abstract The risk parity solution to the asset allocation problem yields portfolios where the risk contribution from each asset is made equal. We consider a generalized approach to this problem. First, we set an objective that seeks to maximize the portfolio expected return while minimizing portfolio risk. Second, we relax the risk parity condition and instead bound the risk dispersion of the constituents within a predefined limit. This allows an investor to prescribe a desired risk dispersion range, yielding a portfolio with an optimal risk–return profile that is still well-diversified from a risk-based standpoint. We add robustness to our framework by introducing an ellipsoidal uncertainty structure around our estimated asset expected returns to mitigate estimation error. Our proposed framework does not impose any restrictions on short selling. A limitation of risk parity is that allowing of short sales leads to a non-convex problem. However, we propose an approach that relaxes our generalized risk parity model into a convex semidefinite program. We proceed to tighten this relaxation sequentially through the alternating direction method of multipliers. This procedure iterates between the convex optimization problem and the non-convex problem with a rank constraint. In addition, we can exploit this structure to solve the non-convex problem analytically and efficiently during every iteration. Numerical results suggest that this algorithm converges to a higher quality optimal solution when compared to the competing non-convex problem, and can also yield a higher ex post risk-adjusted rate of return.
Keywords: Non-convex optimization; Robust optimization; ADMM; Risk parity; Asset allocation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s10898-020-00915-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:jglopt:v:78:y:2020:i:1:d:10.1007_s10898-020-00915-x
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/10898
DOI: 10.1007/s10898-020-00915-x
Access Statistics for this article
Journal of Global Optimization is currently edited by Sergiy Butenko
More articles in Journal of Global Optimization from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().